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Abstract--The use of catalytic monoliths in high temperature combustion applications means that heat 
exchange by radiation plays an important role. Initially, this paper derives the system of integral equations 
that is used lo model radiative exchange in a catalytic monolith with square or circular channels. Since the 
system is often coupled with a complex system of differential and algebraic equations that models channel 
interaction and other processes in the catalytic combustor, a simple approximation to the integral equations 
is introduced to make the problem tractable. The approximation technique is compared, first with the 
numerical solution of the integral equation for a cylindrical single channel, and second with published data 
for a simple, cavity. The results of these two exercises show that the integral equation system and its 
approximation yield similar results to other workers and hence are appropriate for the modelling situation. 

1. I N T R O D U C T I O N  

As interest has increased in the use of catalytic mono-  
liths in primary combustion processes to reduce emis- 
sions of oxides of nitrogen, NOx [1-3], so too has the 
need for the mathematical modelling of these reac- 
tions. Throughout  the literature the monoli th con- 
figuration has been used in a variety of combustion 
applications ranging from established technology 
areas, e.g. as a catalytic convertor to applications in 
novel designs of catalytic gas turbine combustors. The 
monoli th reactor consists of a large number  of parallel 
channels (with thiin walls), and resembles a honey- 
comb structure. Although the monoli th can be fab- 
ricated with chanr~els varying in size, cell density and 
shape, the square shaped channel is frequently en- 
countered in the literature and in commercial appli- 
cation. The surfaces of the channels may be coated 
with a high surface area 'wash-coat'  (e.g. 3,-alumina) 
that contains the dispersed catalyst(s) and this is the 
place where the heterogeneous combustion reaction 
occurs. In order to successfully model the physico- 
chemical processes taking place in a monolith reactor 
it is important  to consider heat transfer by radiation 
and interacting effects, particularly when surface tem- 
peratures of the monoli th are greater than 1000 K and 
could be as high as 1500 K. At these temperatures, 
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heat transfer by radiation may be significant in the 
following situations : 

(1) Heat transfer between a surface of the channel 
and the end faces of the monolith, see Fig. 2. In some 
cases this may be a neighbouring monolith,  while in 
others it could be the wall of the duct for the gases, 
whose surface temperature could be substantially 
lower than that of the monolith. 

(2) As reactions occur in the monoli th an axial 
surface temperature profile will develop (in the direc- 
tion of the gas flow) and heat exchange will occur 
between the adjacent surface elements in front of and 
behind the differential element modelled, see Fig. 2. 

(3) If there are temperature gradients in the radial 
direction (i.e. between neighbouring channels) then 
heat exchange will occur between the opposite faces of 
the channels in the direction of the radial temperature 
gradient, 

It is to cope with the situation described in (3) above 
that a multichannel model has been developed in order 
to model how channels interact with one another. As 
described in [4]: 

This may arise (a) unintentionally,  e.g. as a result 
of  poor fuel and air mixing, see, for example [5], and 
subsequent fuel maldistribution into the monolith,  or 
(b) intentionally, e.g. as a result of  coating alternate 
channels with catalyst, for example [6]. In both of 
these examples, both gas and wall temperatures will 
differ between the neighbouring channels, resulting in 
heat transfer across the connecting wall and con- 
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NOMENCLATURE 

A Radiation view factor (multichannel 
model) 

Ac Cross-sectional area of a channel [m 2] 
Cp Mean gas heat capacity [J mol-~ K ~] 
E Radiation view factor (multichannel 

model) 
F, d F  Radiation view factor 
Fv Total flow rate into a channel [mol s-l]  
h H for single channel 
ho, hA Approximations to integral operators 

Ko, KA 
H Matrix of integral operator 

approximations 
Ko, KA Integral operators 

View factor (single channel model) 
Matrix of integral operators 
Length of the monolith [m] 
Radiation view factor (multichannel 
model) 
Heat lost by radiation [W] 
Radiative heat loss for single channel 
model [W m -2] 
Radiative heat flux for web wall 
surface [W m -2] 
Radiative heat flux for ring wall 
surface [W m -2] 
Vector of incoming radiative heat 
fluxes [W m -2] 
Vector of outgoing radiative heat 
fluxes [W m -2] 
Approximation to qo 
Vector of radiative heat losses [W m -2] 

K 
K 

L 
O 

Q 

qo 

qR 

qw 

ql 

qo 

~o 
qw 

T~ Black body temperature at entrance to 
monolith [K] 

T2 Black body temperature at exit of 
monolith [K] 

TR Web wall temperature [K] 
Tw Ring wall temperature [K] 
Tw Vector of wall surface temperatures 

[K] 
x Axial distance [m] 
y Non-dimensional radiative heat loss 

for single channel model 
3~ Approximation to y 
z Axial distance [m]. 

Greek symbols 
6 Non-dimensional parameter 
e Solid wall surface emissivity 
eh Apparent hemispherical emissivity for 

circular channel 
0 Non-dimensional temperature 
2 Channel width [m] 
aE Stefan-Boltzmann constant [W m -2 

K-4] 
Z Non-dimensional parameter. 

Superscripts 
r Web wall surface 
+ Outside ring surface 
- Inside ring surface. 

Subscripts 
i ith channel. 

sequential interactions. In case (b), this feature is 
exploited [6] to reduce surface temperatures in the 
active channels and also to provide a preheated fuel 
and air mixture to the next catalytic stage in the com- 
bustor. In case (a) however, higher values of inlet 
fuel concentration may result in the presence of 'hot 
zones', which, if not dissipated as a result of channel 
interactions, may cause catalyst/substrate damage. 
Obviously, in both of these examples, modelling has 
a role to play, aiding system design. 

Although other workers, e.g. [7, 8] have derived 
expressions for radiant heat exchange in monoliths 
with square channels, they have not considered the 
problem of modelling non-adiabatic systems where 
heat exchange between individual channels may 
occur. The modelling of radiation is only one part of 
the reacting model of which an overview has already 
been presented [9]. The system consists of differential, 
algebraic and integral equations and requires solution 
of first order initial value problems and second order 
boundary value problems. The inclusion of radiation 
terms in the multichannel model results in a very com- 
plex system of equations to be solved. Faced with this 

challenge an approximation technique for the radi- 
ation terms has been developed and is described in 
this paper. This makes the problem tractable and also 
offers modellers the choice of using a faster method 
to solve the radiation equations in a single channel, 
when channel interaction is not considered important. 
This paper therefore gives details of the way heat 
transfer by radiation has been modelled using the 
techniques in [10] to give a system of coupled integral 
equations, and describes the techniques used in the 
solution of the these equations. 

To set the scene for the development of the radiation 
equations, an outline is presented of the way in which 
a monolith with square shaped cells is modelled. Fur- 
ther details may be obtained from earlier publications 
[11, 12] on this theme. In summary, the physical form 
of the square lattice substrate of the monolith is trans- 
formed into an axisymmetric configuration. Thus it is 
conceptually possible just to consider a strip of N 
square cells in the radial direction (see Fig. 1). This 
reconfigured multichannel structure enables the mod- 
elling of situations where any combination of fuel, 
heat, and velocity may be maldistributed between the 
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channels. Further, the influence of external heating or 
cooling on channels internal to the monolith can also 
be investigated. The axisymmetry of the reconfigured 
system requires that no energy is transferred through 
web walls and so both web walls for each channel 
have the same temperature and hence only one web 
wall is considered. The model contains many par- 
ameters (e.g. length, channel diameter, thermal con- 
ductivity, emissivity) which can be varied to simulate 
different monolith structures and materials. The next 
section presents the steps in deriving the system of 
integral equations, Section 3 gives details of the 
approximation teclmique and its comparison with full 
numerical solution of the integral equation in the sin- 
gle channel case, and Section 4 compares predictions 
of energy fluxes fi'om a cavity, calculated using the 
approximation technique with published data from [13]. 

2. MODELLING RADIATIVE HEAT EXCHANGE 
USING INTEGRAL EQUATIONS 

In this section equations are derived for radiative 
heat exchange between channel wall surfaces and 
between the channel wall surfaces and the open end 
faces of the monolith. First, the various energy fluxes 
are defined and energy balance equations written in 
Section 2.1. Section 2.2 gives a general consideration 
of radiative heat transfer, and Section 2.3 applies this 
to a square channel to find an expression for the 
incoming energy flux to a wall surface. The balances 
of Section 2.1 are then used to derive the integral 
equations to be solved for the energy fluxes. This 
section is completed by deriving formulae for the view 
factors in a square channel in Section 2.4. 

2.1. General balance equations 
This section de:fines the energy fluxes to be con- 

sidered and gives the overall energy balances which 
are a starting point for deriving the equations. For  a 
wall surface at a distance x from the channel entrance 
let the heat loss via radiation, the outgoing and 

incoming heat fluxes, and the temperatures of the 
inside and outside ring surfaces and web walls (see 
Figs. 1 and 2) be denoted by the vectors 

qw~(X) = (qw~(X), qR~(x), q~v,_, (x)) T 

X r X + X T q o i  ( X )  = (qo~(),qoi( ),qo~_,()) 

r X + X T qI~(X)  = (qi~(x),qi~(),ql i ~ ( ) )  

Tw,(X) = (Tw.(X), TRi(X), T~v i I(X)) T 

then the heat loss is the difference between the out- 
going and incoming radiation 

q w  i ( X )  - -  q o  i ( X )  - -  q l  i ( X ) .  ( 1 )  

The walls are assumed to be diffuse and grey, thus the 
outgoing energy is the sum of the emitted energy and 
the incoming energy which is reflected, i.e. 

qo~(X) = ~aET~v~(x) + (1 -e)ql~(x). (2) 

Here e is the emissivity of the coated wall and the 
assumption that the wall is grey means that reflec- 
tivity = 1 -emissivity,  see ref. [10], p. 74. Eliminating 
qli(X ) between (1) and (2) gives 

qw,(X) (1--e) {q°'(x)-- aET4w~(X)}" (3) 

An expression for q~,(x) in terms of qo,(X) is now 
sought which can be used in (2) to find the outgoing 
radiation which, in (3), will yield the radiation heat 
loss required for use in the model. 
To find this relationship between incoming and out- 
going radiation, consider as an example a differential 
element on an inside ring wall (see Fig. 2). Then the 
incoming radiation is made up of five parts (see Fig. 
2): 

two contributions, one from each end cavity 
two contributions, one from each adjacent web wall 

and 
one contribution from the opposite ring wall. 
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Fig. 2. View factor functions for a square channel. 

2.2. Heat  exchange between a differential element and 

a f ini te  area 
In this section the methods for the general calcu- 

lation of heat interchange between surfaces classed as 
finite or differential are described (see [10]). These are 
used in Section 2.3 below to find the expression for the 
incoming radiation used in (2). The following explains 
how the individual heat fluxes can be calculated and 
shows which expression is used when considering heat 
exchange with the end faces and which when con- 
sidering heat exchange with the channel walls. 

First consider two differential areas dA~ and dA 2 
and a finite area A2 (containing dA2) which are arbi- 
trary in space. Let dFdj d2 be the fraction of energy 
leaving dAt arriving at dA2 and Fd~_2 be the fraction 
of energy leaving dA1 arriving at A 2. Then 

Fdl_2 = f dFdl d2 

dA 2 

([10] equations in this reference are numbered 7-14). 
The reciprocity rule, used in the following form, gives 
the fraction of energy leaving A2 arriving at dA~: 

dA~ 
F2 d , -  Fd,-2. (4) 

A2 

For one differential area (dA~) and one finite area 
(A2) the energy exchange from A2 to dAt is 

dQ2 dl = q%Fz-dlA2 

where qo2 is the outgoing energy flux from A2. So if 
ql, is the incoming energy flux to dA~ from A2, the 
following is obtained 

dQ2 dl A2 
qi~ -- dA,  - q%F2 dl dA1 -- qo=Fd,-2, (5) 

by (4). This expression is used to model radiation to 
the end cavities which are considered finite areas with 
a given temperature. 
Now for two differential areas, the energy exchange 
from dA2 to dAi is 

dgQa2_al = q% dFd2-dl dA2, 

where q02 is the outgoing energy flux from dA2. Let 
ql, be the incoming energy flux to dA~ from dA2, then 

d2Qd2_dl dA2 
ql, dA 1 - -  q% dF~2_ ~l dA j " (6) 

Using the reciprocity relation dF~2 dl dA2 = 
dFd~_dzdAj and integrating over the emitting area, 
the expression obtained is 

energy flux to differential area dA 1 from A 2 

= f qo:dFdl-0z. (7) 
da 2 

Since the heat flux from the walls is dependent on axial  
distance, the channel walls are considered as the sum 
of differential elements at given axial distances. There- 
fore (7) is used to model radiation from channel walls. 

2.3. Radiant heat exchange in a square channel 
The expressions from Section 2.2 are now applied in 

the square channel of Fig. 2 to calculate the incoming 
energy to a channel wall, qi,(x), which can then be 
used in (2) to calculate the outgoing energy qo,(X). 
The incoming heat flux for the differential element 
dA2, at a distance x along the channel, is 

ql. (x) = energy from entrance 

+ energy from exit 

+ energy from opposite channel wall 

+ energy from adjacent channel walls 

+ X Z Z 

( 'L/2 r X Z Z 
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where E(X), O(X) and A(X) (X = x/A) are view fac- 
tors which are derived in Section 2.4. This expression 
can then be used for the first component of the vector 
equation (2) to give an equation for qow. Similar equa- 
tions can be found for the radiation losses from the 
other walls and together they form a coupled system 
of Fredholm integral equations of the second kind. 
The system is : 

Radiative heat transfer for inside ring wall 

'~ r X Z Z 

4 x 4 L 

+~(Tw,(X)) 4 } 

Radiative heat transfer for web wall 

q~o,(X) = (1--e) qo,(z)A - d 

+(1 --~;) r X Z Z 

4 x 4 L 

q- E(TRi(X))  4 } 

Radiative heat transfer for outside ring wall 

qo~l ,(x) = (1 -~) qo,(z)O - ~ d ~ 

+ 2 ( l _ e )  j0 r X 

" 4 x 4 L 

+~(T +, ,(x))4}. 

The solution of these equations for each channel then 
allows the calculation of the vector of heat losses qw~ 
from (3) in the fo].lowing manner : 

g 
qw~(X) - (1--e) {q°'(x)--aE(Tw'(X))4} 

qR,(X) - {1--e) {q[~,(x)--aE(TR,(X)) 4 } 

q+ ](x) - ( 1 - e )  {qa, , ( x ) - a z ( T + ( x ) ) 4 } .  

As an aid to later simplification of the system of inte- 
gral equations to a finite dimensional system of linear 
algebraic equations, define the integral operators KA 
and Ko by 

'~" r X Z Z (8) 

Then the system of three coupled integral equations 
for qo can be written as i 

[ ( I - (1 -e )K)qoJ(X)  = g(x, Tw) (10) 

where (0 
K =  KA K o  

Ko 2KA 

and 

This linear system is the key equation for the inclusion 
of radiation in the multichannel model. The solution 
qo~ found from it can be used in (3) to find the energy 
loss by radiation which is used in the wall surface 
energy balances of the model. 

If Tw~ were known then (10) could be viewed in 
isolation. The solution of this 3 x 3 system of integral 
equations for the multichannel model would clearly 
require a great deal of computational effort. In this 
case however, Tw, is not known and so (10) is coupled 
to a system of differential and algebraic equations 
of heat and mass conservation which comprises 22 
equations (see [9]). In addition to this, the situation is 
further complicated by the multichannel nature of 
this model which means that the coupled integral- 
differential-algebraic system is written for each chan- 
nel, and the equations of neighbouring channels are 
also coupled. 

An attempt to solve the 3 × 3 system of integral 
equations numerically will create a large time delay in 
the solution of the total model, thus a simplification 
of the linear system is needed. Such a simplification is 
presented in Section 3 to allow the radiation terms to 
be computed more easily. This makes inclusion of 
radiation into the multichannel model possible. Before 
this is described in detail the derivations of the view 
factors E(X), O(X) and A(X) are given, followed by 
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the radiation integral equation for a single channel 
model. 

2.4. View factors E(X), O(X) and A(X) 
The view factors for a square channel are calculated 

here using view factor algebra and standard view fac- 
tors from [10]. The bodies involved in these exchanges 
are shown in Fig. 2. E(X) (X = x/2) is the view factor 
function from an end face to a differential strip on 
one monoli th wall, a distance x from the face. Thus 
from [10] (Appendix C no. 9 with a = 2, b = 2, c = x) : 

1 ( 1 x, X2(X~+2)  
E(X) = ~ ~a rc t an~  -t- 2 m ( X 2 + ~ £  

i 

1 
X (1 +X2)l/2} ' (1 +X2)  ~/2 arctan 

The view factors O(X) and A (X) describe the fraction 
of energy leaving differential elements on opposite and 
adjacent channel walls respectively which reaches the 
differential element considered (dA 2 in Fig. 2). The 
distance between the emitting and receiving differ- 
ential elements is denoted x and again X = x/2. Let Sl 
denote the opposite channel wall to dA2, dA 1 denote a 
differential element on this side, and choose dA2 to be 
at the exit to the channel. Then, from [10] (Appendix 
C number  5 with a = L, b = 2, c = 2), we have, 

1 ( / -  . ( L / 2 )  ~ L 
FdA2_SI : -  n ~ / 2 a r c t a n  ~ - - a r c t a n 2  

(L/2) 1 } 
+ (1 + (L/2) 2) ~/2 arctan (1 + (L/2) 2) 1/2 • 

Further it was noted in Section 2.2 that there is an 
integral relationship between finite-differential and 
differential--differential view factors which in this case 
gives 

---- ). 

(ll) 

Now define 

F ( x ) = l { x / ~ a r c t a n ~ 2 - a r c t a n X  

X 1 } 
+ (1 + X 2) 1/2 arctan (1 + ~-2) 1/2 

and note that FaA2-S, = F(L/2)-F(O).  Thus the inte- 
grand in (11) (the required view factor) must be F'(X), 
where ' denotes differentiation with respect to X. 
Hence 

O(X) = F'(X) = (1 + X  2) 3/2 arctan 
(1 +X2)  1/2 ' 

In an enclosed system, view factors from any point of 
the system to the rest of the system sum to unity, thus 

Fig. 3. The view factors for a cylindrical channel. 

or 

FaA2_Sl +2FaA2_S2 +FdA2_LH +FdA2_RH = 1 

FdA2-S2 =½{1--FdA2-s,--FdA2-Ln--FdA2 Rn}. 

(12) 

Here Sz is the side adjacent to dA2 and LH and RH 
are the entrance and exit of  the channel, respectively. 
All the view factors on the right-hand side of (12) are 
known and so, assuming again that dA2 is at the exit 
to the channel, the view factor ofdA2 from $2 is 

dFdA2_S2 = ~1 {2a rc t anL  -x / / 2a rc t an  (L/2) 

(L/2) 1 (L/2)2((L/2)2 +2)'1 

Arguing as for O(X) above, it can now be shown that 

1 X2(Xe+ 1) 
A(X) = -- ~ , n  ~ X S ~ ) ~  . 

2.5. Radiant heat exchange & a circular channel 
When channel interaction is not  of interest it is 

only necessary to model one of the channels in the 
multichannel structure. It is common in the literature 
to consider circular channels in this case and to work 
with cylindrical coordinates. Thus, in this case, there 
is only one wall surface temperature profile to consider 
and hence only one integral equation to solve. This 
case is discussed for two reasons. First it is physically 
interesting in its own right and second it is used to 
check the validity of our approximation. The integral 
equation for radiative heat exchange can be derived in 
an exactly analogous way to that for the multichannel 
model described above. The view factor between the 
differential elements (now circular shaped rings on the 
channel wall) is K(X) and F(X)  is the view factor 
from an end face to a differential ring on the channel 
wall (see Fig. 3). These view factors can be found in 
[10] (Appendix C nos. 29 and 30) and are given here 
for X = x/2 

X(X  2 + 3/2) 
K(X) = 1 

(X 2 + 1) 3/2 

and 

X 2 + 1/2 
F(X) - X. (X "2 + 1) 1/2 
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The modelling approach of Section 2 is applied to a 
cylindrical channel and yields the integral equation 

('L/;qo(z)K( ~ _  g o ( x ) -  (1 -~ )  J0 2 ) 6 ( 2 )  

4 X 4 L x 4 

where qo is the (dimensioned) outgoing heat flux, T1 
and T2 are the upstream and downstream black body 
temperatures, respectively, and Tw is the wall tem- 
perature. The integral equation in non-dimensional 
form is 

y(s) -- (1 -e)6 fl  y(t)K(6ls- t[) dt 

= Z{(1-e)[O4F(s6)+O42F((1-s)6)]+eO4w(S)} (13) 

where y is the non-dimensional outgoing radiation 
flux, s = x/2, t = z/2, 01, 02 and 0w are non-dimen- 
sional temperatures and 6 and Z are non-dimensional 
parameters. For  convenience later, denote the right- 
hand side of (13) byf(s ) .  

3. APPROXIMATION OF THE INTEGRAL 
EQUATION SYSTEM 

As discussed at the end of Section 2.3 the motivation 
behind the search for an approximate solution strat- 
egy is that the cost of the full solution of the 3 x 3 
system of integral equations (10) for the square 
geometry is likely to be very expensive even for one 
channel. The full solution would be accomplished by 
first discretising the channel at N points say. Then 
the system of integral equations (10) is replaced by 
a 3N x 3N linear system of algebraic equations. The 
solution of this system by Gaussian elimination 
requires 2(3N)3/3 floating point operations [14] (p. 
99), and is repeated for every channel. Since N is likely 
to be very large this :is a significant task. When coupled 
with the differential and algebraic equations in a mul- 
tichannel model, the total cost for the solution process 
is very high. 

In this section an approximation of the system of 
integral equations is described which relies on the very 
peaked nature of the kernels in the integral operators. 
This approximation 

(i) eliminates the need for the full solution of the 
discretised, coupled integral equations, 

(ii) dramatically reduces the time taken for solution 
of the problem and 

(iii) is accurate enough for modelling purposes. 

These features are described below as follows. The 
approximation is introduced heuristically for the 
square shaped channel in Section 3.1, and formulae 
for the new operator expressions are given in Section 
3.2. In Section 3.3 1:he approximation is applied to a 
single cylindrical channel and Section 3.4 contains a 

brief but rigorous error analysis and a simple estimate 
for the error in the approximation obtained. This esti- 
mate is shown to be very accurate in the circular 
channel example (see Fig. 5). The final part of this 
section is a comparison between the approximate and 
numerical solutions of the integral equation for the 
cylindrical single channel model which demonstrates 
the accuracy of the approximation and supports the 
error analysis of Section 3.4. 

3.1. Integral approximation 
The key to this approximation is in the nature of 

the kernel functions O([x-z[/2) and h(lx-z[/2) 
shown in Fig. 4 (for L = 60). It is seen that the kernels 
are essentially zero over most of the interval, but over 
a small part they are very peaked. In a very loose sense 
these kernels resemble the delta function and so it is 
reasonable to make the approximation 

L/~ /Ix z z 

' ~q ( x ) I 2 / XA( ~ - ~ ) d ( ~  ). 

Denote the integral on the right hand side of this 
expression by hA(x), that is 

and hence, using the notation of (8), 

(KAq)(x) ~ q(X)hA(X). (14) 

Similarly, using the notation of (9) 

(Koq)(x) ~ q(x)ho(x) (15) 

where 

This development is very heuristic, but a straight- 
forward error analysis which indicates that this 
approach does provide an acceptable approximation 
is given in Section 3.4 for the cylindrical channel. 

The system of integral equations (10) is now 
replaced by a linear system of algebraic equations 
using the approximations for KAq and Koq in (14) 
and (15). To be precise define 

H(x) = hA ho 

ho 2hA 

and then (10) is replaced by 

(I--  (1 -e)H(x))(]o,(X) = g(x, Tw). (16) 

The solution ~]o~(X) of this system is an approximation 
to the true solution of (10), qo,(X). The important 
point is that, for a fixed x, I]o,(X) is found by solving 
a 3 x 3 algebraic system. In comparison, the integral 
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Fig. 4. The kernels A(Ix--zr/2) and O(Ix-zl/2) for L = 60, 2 = 1, x = 30. 

equation nature of (10) means that qo,(X) cannot be 
found easily as it depends on qo,(Z) which appears in 
the integrals on the left-hand side of (10) for all 
0 ~< z ~< 1. (See the individual integral equations for 
each particular occurrence.) 

The numerical effort to solve the radiation has 
decreased dramatically since (16) is merely a 3 x 3 
linear system of algebraic equations to be solved now 
at each axial point of the discretisation. Thus for N 
discretisation points only O(N) operations are needed 
rather than O(N 3) operations for full numerical solu- 
tion of (10). 

3.2. Formulae for ha(x) and ho(x) 
By considering the definition of ho(x) it can be seen 

that this function has a physical meaning, it is exactly 
the view factor from a differential element on one 
channel wall to the whole of the opposite wall. Thus 
by considering the opposite wall as two rectangular 
pieces joined at an axial distance x the view factor 
from the differential element to each of the opposite 
pieces can be calculated from [10] (Appendix C num- 
ber 9 with a = x or L - x ,  b = c = 2). Then ho(x) is 
the sum of these two terms, i.e. 

where 

1{ x/ ~22 F(X) = - 2 arctan - arctan X 
7~ 

X 1 } 
+ (1 +X2) ~/2 arctan (1 +~(2)~/2 

(as in Section 2.4) and X = x/2. 
Notice that F(X) here is just FdA2-S, from Section 

2.4 with L/2 replaced by X. Thus, to calculate hA(X) 
the expression for Fdg2-% from Section 2.4 with L/2 
replaced by X, G(X) say, is used in the same way as 
F(J  0 for ho(x). This yields 

where 

1 2 a rc tanX-x /2  arctan x/2 c(x) = 

X X2(X2 q- 2)) 
- 2 ' n  (X~+U5 ; 

and X = x/2. 
The next subsection demonstrates the approxi- 

mation technique applied to the single channel radi- 
ation equation, and following that, a mathematical 
error analysis is given. 

3.3. The single channel model radiation approximation 
For the cylindrical channel considered in the single 

channel model the approximate solution, y, can be 
found from the corresponding version of (16) which 
turns out to be a single algebraic equation. The dimen- 
sional integral term is approximated as follows 

f'L,,~. / I x  z 

Thus, by defining 

~/~ Z ~ I 

fi(s) (the non-dimensionalised heat loss) is found from 
the equation 

(1 - (1 - e)h(s))y(s) = f(s). (17) 

Now the formula for h(x) is precisely the view factor 
from the inside cylindrical surface of the channel to a 
differential ring on the surface. Now, the algebra of 
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view factors states that the sum of view factors in a 
closed geometry is unity and so it is clear that 

h (s) = 1 - F (6s) - F (3 (1 - s) ) 

where F(X) is defined in Section 2.5. Thus the 
approximation to the integral equation (13) yields a 
solution, f,  given by: 

~{(1 --e)[O~,F(6s) + O~F(6(1 --s))] + cO4 (s)} 
y(s) = 

1 -- (1 - e)h(s) 

3.4. Error analysis of the approximation for the circular 
single channel 

To analyse the error made by approximating y to 9 
observe that, with f(s) representing the right-hand 
side of the integral equation (13) 

y(s) = f(s) + (1 - e)6 f l  K(6 Is- tl)y(t) dt 

= f(s) + (1 -~)6 f l  K(6 Is-  tl)[y(s) 

+ y ( t ) -  y(s)] dt 

= f(s) + (1 - e)h(s)y(s) + (1 - e)6 

× fl  g(b Is-tl)[y(t) -y(s)]  dt. (18) 

Now, rearranging (17), the approximation to the inte- 
gral equation, gives 

)~(s) = f ( s ) +  (1-e)h(s)f~(s). (19) 

It is clear from (18) that the approximation can also 
be found by neglecting the last term on the right-hand 
side. Thus the reason why the approximation method 
works is as follow,;. The integrand in the last term on 
the right-hand side is 'small' since the y(t) -y(s) term 
helps to cancel the peak in the K(Ols-tl) term when 
t , , ~ s .  

To continue the: error analysis, subtract (19) from 
(18) to find 

e(s) 
y(s)-@(s) - l - ( 1 - e ) h ( s )  (20) 

where 

f, e(s) = (1-~)6 K(61s-tl)[y(t)-y(s)] dt. 
do 

(21) 

This expression involves the unknown exact solution 
y(s) of (13), but by replacing y in (2 l) by )~, an approxi- 
mation to e(s) may be calculated as 

~(s) = ( 1 -  ~)6 I ~ K(61s- tl)[)~(t)-)~(s)] dt (22) 
30 

and then 

O(s) 
y(s) -2f(s) ~ 1 - (1 - e)h(s)" (23) 

This integral can be calculated numerically for s s [0, 
1]. For 6 = 10, ~ = 0.8, 3( = 1, 01 = 0.75, 02 = 1.25, 
and 0w(S) = 1.5 the right-hand side of (23) can be 
calculated and the absolute value is plotted in Fig. 5, 
along with the relative error lY-PI/f'. This dem- 
onstrates that the absolute and relative errors are 
small in the centre of the channel and rise at either 
end. Nonetheless the relative error is certainly within 
standard error tolerances. Further note the closeness 
of Fig. 5, an approximation to the absolute and rela, 
tive errors in ))(s), to Fig. 6, a plot of the accurate 
calculation of these errors (Fig. 7 overlays the relative 
errors from Figs. 5 and 6 to confirm this very close 
agreement). (Note the difference in vertical scales 
between Figs. 5 and 6, and Fig. 7.) 
As mentioned in the previous paragraph, the accuracy 
of the approximation procedure can be further 
checked by comparing .9 with the numerical solution 
of the full integral equation (carried out as in [15] to 
an absolute tolerance of 0.5 x 10-3). The difference in 
the solutions is shown in Fig. 6 for the parameter 
values given above. The graph affirms that the 
approximation is close to the solution of the full inte- 
gral equation in the centre of the range and the larger 
differences at the end points are because of the radi- 
ation conditions which the approximate solution can- 
not take into account fully. This may be expected 
from the analysis in [ 16] which reveals that large gradi- 
ents in y can dominate the error, ly-)~l, and these 
large gradients are typically found near the entrance 
and exit of the channel. In spite of this, the approxi- 
mation technique only introduces an 'error' of (at 
most) 0.5% into the solution for the outgoing heat 
flux (see the relative error plot). This gives confidence 
that the application of this approximation technique 
to the square shaped cells in a multichannel system 
will provide satisfactory results. 
The solution of equation (16) is used in (3) to give an 
approximate heat loss ~]w, which appears in the energy 
balance equations of the multichannel model [9]. 

4. COMPARISON WITH A SIMPLIFIED CAVITY 
OPENING 

Both the square shaped cell, multichannel radiation 
model described in Section 3, and the circular single 
channel model are run in simulation mode, and for a 
range of inlet conditions the heat loss by radiation 
from one of the end faces is calculated. Since the 
condition simulated does not include the addition of 
fuel, the heat lost from the monolith can only be 
taken from the gas phase. Thus the heat loss may be 
determined from the overall gas phase heat balance 
across the system, that is, for the gas temperature 
T(x), 

Q = FTCp(T(L) -- r(o)) (24) 
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Fig. 5. Graph of absolute and relative errors caused by the approximation. 
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Fig. 7. Comparison of relative errors from Figs. 5 and 6. 

where FT is the total flow rate into a channel and Cp 
is a mean heat capacity for the gas. There is no net 
heat flux to the black body heat sink at the front face 
when the black body temperature (Tl) is set equal to 
the gas inlet temperature (T(0)) and this is the situ- 
ation in these simulations. The results are compared 
with the solutions in [13] which are presented in 
graphical form for radiation from a circular hole of 

finite depth with diffuse reflecting walls at a constant 
temperature, Tw, say. For a fixed value of emissivity, 
e, if the ratio L/2 of the cavity is greater than 3, 
the effective hemispherical emissivity approaches a 
limiting value, eh. In this application, since L/2 ~ 100, 
the heat loss, Q may be determined from 

Q = ~hAc~E(r~-- r~) 
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Fig. 8. Q/At against aE(T 4 -  T~) for circular and square 
channels. 

where Ac is the cross-sectional area of the cavity and 
T2 is the downstream black body temperature. 

Figure 8 plots Q/Ac against aE(T 4 -  T 4) for two 
values of e. Here the heat loss Q is calculated from 
(24) and Tw is varied by varying the inlet temperature. 
The two values of e chosen are 0.7 and 0.2 and the 
respective values of eh are 0.9 and 0.62. The value 0.7 
is typical and may be used in simulations, the value 
0.2 has been chosen only as a test. Agreement with 
the published resu]ts will place data points on the 
straight lines in Fig. 8. 

In comparing the calculated data with the published 
data three points must be borne in mind: 

(i) the published data is for circular channels only; 
(ii) the wall temperature in the calculations was not 

fiat as assumed in the published data and 
(iii) a mean wall temperature must be used, which 

may be calculated i:a many ways. 

Despite these differences it is clear from the figure 
that good agreement is obtained for both circular 
and square channels. The agreement deteriorates for 
higher wall energy fluxes (higher wall temperatures) 
due to the increasingly non-constant wall tem- 
peratures and thus a difficulty in deducing the correct 
mean wall temperature to use in the calculations. The 
data points lie below the lines of agreement because 
the approximate solution of the integral equation(s) 
does not take into account the total heat loss near the 
ends of the channels and so the wall temperature is 
higher than expected. Thus 0"E(T~v--T~) has a high 
value, taking the data to the right of the straight lines. 
Data obtained when using the numerical solution of 
the integral equation for the circular channel is also 
plotted and lies close to the published data. These 
results verify the modelling of radiation in circular 
and square channel:s and give confidence in the use of 
the approximation technique for solving the system 
of integral equations when coupled with the differ- 

ential and algebraic equations of the heat and mass 
balances. 

5. CONCLUSIONS 

A system of integral equations is developed for the 
modelling of radiative energy exchange in a square 
channel of a catalytic monolith reactor. Approxi- 
mations to the integral operators are presented which 
allow the reduction of the integral equation system to 
a matrix system. This matrix system is solved to give 
the radiative fluxes which are then used in the coupled 
system of differential and algebraic equations that 
model the reaction in the monolith. For a circular 
channel the system becomes a single integral equation 
which can be solved numerically using the modified 
collocation approach of[15]. This was compared with 
the solution to the approximation of the integral equa- 
tion and the two were found to agree well. Further, 
radiative flux data from a diffuse-grey cavity is com- 
pared with the fluxes predicted by both the single 
channel and multichannel equations. The com- 
parisons were carried out at several different wall tem- 
peratures and the solutions of the equations presented 
here are a good match for the published data. 
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